MONITORING BEIM BETRIEB VON AUTOBAHNEN

4. Interalpine Bautage Igls 2021 Thomas Gabl 11.11.2021

ZERSTÖRUNGSFREIE MESSWERTGEBUNDENE AUTOMATISIERTE UNTERSUCHUNGEN BZW. ÜBERWACHUNGEN AN INGENIEURBAUWERKEN

ZIELE MONITORING

ERRICHTUNGSPHASE / BETRIEBSPHASE

Dokumentation von Bauzuständen

- ☑ Überwachung der Zustandsentwicklung
- Erkennen kritischer Bauzustände
- ☑ Erfassung der realen Größen der Einwirkungsund Widerstandsseite
- Überwachung von nicht direkt einsehbaren Tragwerksbereichen (geankerte Konstruktionen, Stützmauern)
- Vergleichswerte für statische Berechnungen
- Erfassung des realen Verhaltens von Tragwerken unter außergewöhnlichen Beanspruchungen oder Probebelastungen

MONITORING IN DER BETRIEBSPHASE

Verbindliche Anwendung der RVS-Reihe 13.03 am Beispiel 13.03.11 Brücken

PRÜFUNG

alle 6 (12) Jahre

KONTROLLE

alle 2 Jahre

LAUFENDE ÜBERWACHUNG

alle 4 Monate

_ SONDERPRÜFUNG

nach Bedarf

13.03.21 Geankerte Konstruktionen

13.03.31 Tunnel

13.03.51 Wegweiser

13.03.61 Mauern

13.03.71 Lärmschutz

13.03.81 Wannen

SONDER-PRÜFUNG

RVS 13.03

Falls im Zuge der Prüfung Schäden festgestellt oder durch äußere Anzeichen erkannt werden, deren Ursache und Ausmaß nicht ausreichend genau ermittelt oder deren Einfluss auf die Funktionstüchtigkeit der Brücke nicht verlässlich abgeschätzt werden kann, hat die Prüferin bzw. der Prüfer zur Beurteilung dieser Schäden das Ergebnis einer Sonderprüfung in den Befund aufzunehmen

MONITORING VON BRÜCKEN UND ANDEREN INGENIEURBAUWERKEN

RVS 13.03.01 MERKBLATT

Quality Assurance for Structural Maintenace Surveillance Checking and Assessment of Bridges and Tunnels Monitoring of Bridges and other Engineering Structures

AISIFIINIAIG

MONITORING IN DER BETRIEBSPHASE

REGELABLAUF MONITORING

Interpretation der Messergebnisse / Vergleich mit definierten Grenzwerten

PLANUNG EINER MESSUNG

FESTLEGUNG EINER MESSGRÖßE -> SENSORIK

		Sensortyp										
	Physikalische Messgröße	Weg- aufnehmer	Inklino- meter	Schlauch- waage	Entfernungs- messgerät (optisch)	Dehn- mess- streifen	Tachy- meter	Faser- optischer Sensor	Kraft- messdose	Druck- sensor	Beschleunigungs- sensor	Schwinggeschwindig- keitssensor
	Verformung/Verschiebung (vertikal) [m]					lokal						
	Verformung/Verschiebung (horizontal) [m]					lokal						
ų.	Schiefstellung/Verdrehung [°]										Sensorabhängig	Sensorabhängig
Statistisch	Setzung [m]											
S	Dehnung [‰]											
	Kraft [N]										Seilkräfte	Seilkräfte
	Druck [N/m²]											
	Beschleunigung [m/s²]											
Jynamisch	Schwinggeschwindigkeit [m/s]											
Dyna	Eigenfrequenz [Hz]											
	Dämpfung [%]											

Tabelle lt. Merkblatt RVS 13.03.01

Interpretation von Rechenmodellen ermittelt werden (z.B.

Direkt erfassbare Größen

Größen (z.B. Spannung

(z.B. Verformung)

Indirekt erfassbare

über Dehnung)

Größen, die über

- Eigenfrequenz)
- ☑ Ziel: möglichst direkte Erfassung der Größe

Legende

Sensor sehr gut geeignet
Sensor bedingt geeignet
Sensor nicht geeignet

ART DES MONITORINGS

GLOBALES MONITORING

Gesamtverhalten einer Konstruktion

LOKALES MONITORING

Verhalten einzelner Bauteile

TEMPORÄRES MONITORING

Befristete Dauer; Event. Wiederholung in periodischen Abständen

PERMANENT MONITORING

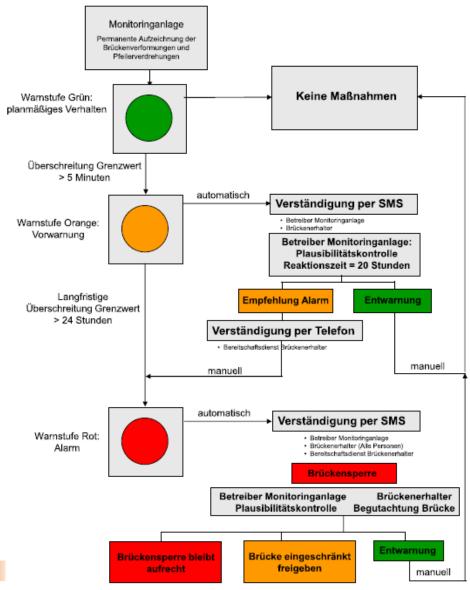
Dauerhaft Messwertaufnahme aber auch in Intervallen

PLANUNG EINER MESSUNG

WEITERE ASPEKTE

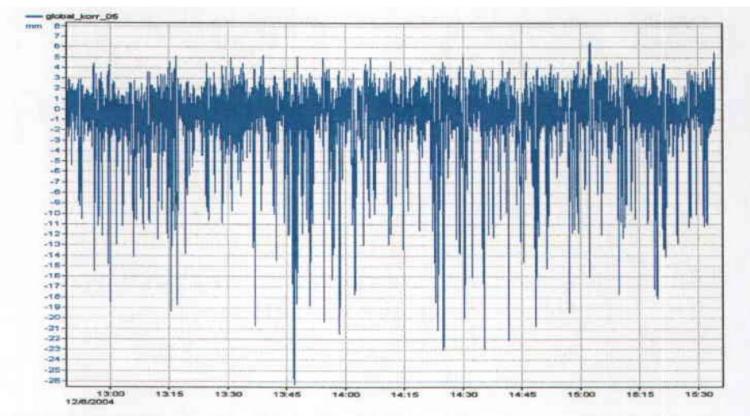
- Empfindlichkeit
- Robustheit
- Sensorraster
- ☑Ziel: möglichst direkte Erfassung der Größe

PLANUNG EINER MESSUNG


WEITERE ASPEKTE IN HINBLICK AUF DURCHFÜHRUNG

- Abtastrate
- Dauer der Messung
- Anzahl der Messungen
- Plausibilitätskontrollen

ÜBERWACHUNG KRITISCHER BAUWERKSZUSTÄNDE



ALARMPLAN

- Regelung der Verantwortlichkeit
- Festlegung von Warn- und Alarmwerten
- Festlegung der zugeordneten Maßnahmen
- Darstellung in Form eines Flussdiagrammes
- Auflistung der Kontaktdaten

RISSBREITE VERFORMUNGSVERHALTEN

- Reale Verformung
- Vergleich mit statischer Berechnung
- ☑ Einfluss von Temperatur
- ☑ Ermittlung der tatsächliche Steifigkeit
- Begleitend bei Probebelastungen bzw. Sondertransporten

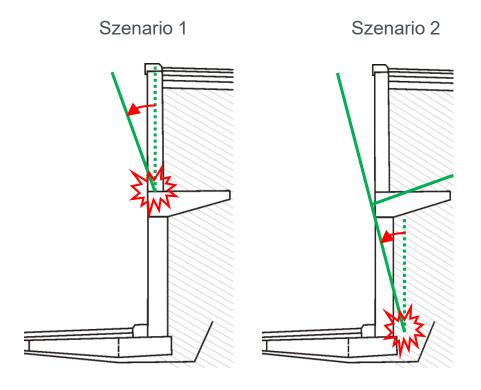
VERHALTEN VON LAGERN (FAHRBAHNÜBERGÄNGEN)

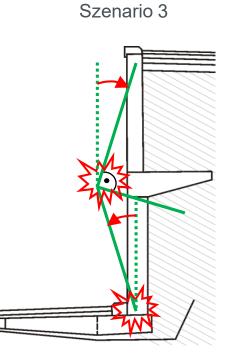
- **■** Lagerverschiebungen
- Lagerverdrehungen
- ☑ (Lagerkräfte)

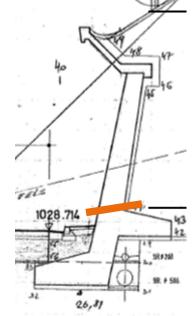
ANKER- UND SPANNGLIEDKRÄFTE

- Ermittlung der Ankerbzw. Spanngliedkraft
- Dehnung des Ankers bzw. Spanngliedes

Datum	Messgerät	Manometermesswert	Elektr. Messwert	Messwert	
		[kN]	[% von 1500kN]	[kN]	
27.07.2007	MD1		48,48	727,2	
27.07.2007	MD2	810	54,58	818,7	
27.07.2007	MD3		59,45	891,75	
27.07.2007	MD4		53,65	804,75	
27.07.2007	MD5	710	43,7	655,5	


SEILKRAFTBESTIMMUNG (SPANNGLIEDKRAFT-)

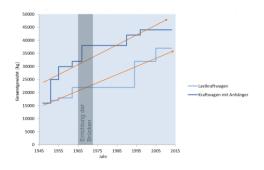



- Indirekte Messung Ermittlung der Seilkraft über Eigenfrequenz (Prinzip der Schwingenden Saite)
- Auch möglich bei externer Vorspannung

SCHIEFSTELLUNG

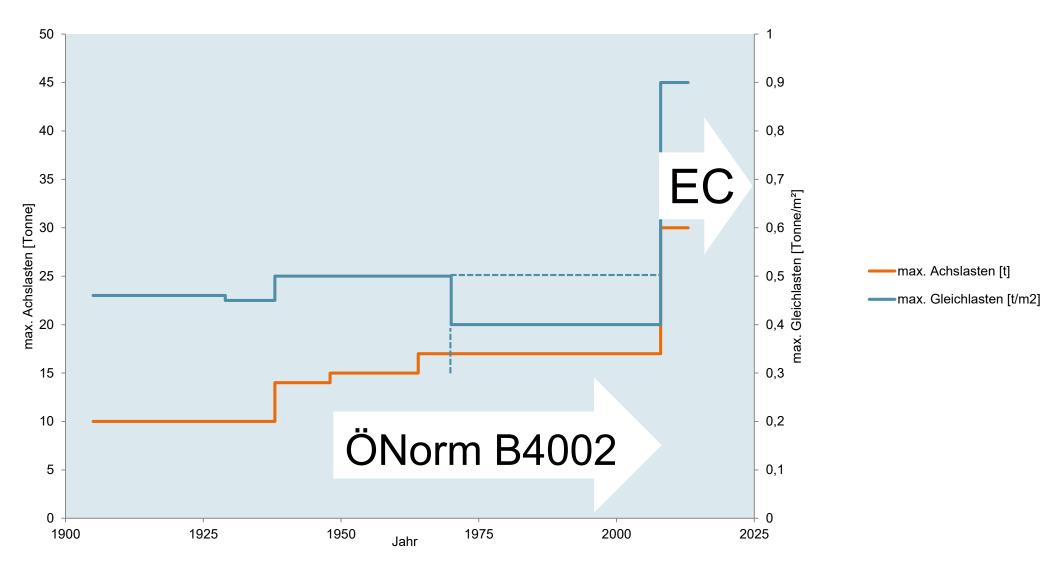
- Neigungssensoren

 Einsatz alternativ
 zur klassischen
 vermessungs technischen
 Aufnahme
- Häufige
 Anwendung bei
 Stützmauern
- Inklinometermessungen



HERAUSFORDERUNG – BEWERTUNG DER TRAGFÄHIGKEIT BESTEHENDER BRÜCKEN

ZUNEHMENDE GESAMTGEWICHTE



ZUNEHMENDER VERKEHR

AISIFIINIAIG

ENTWICKLUNG DER NORMATIVEN VERKEHRSLASTEN

ÖNORM B4008/2

BEWERTUNG DER TRAGFÄHIGKEIT BESTEHENDER BRÜCKEN

vorher

ICS 91.010.30; 93.040

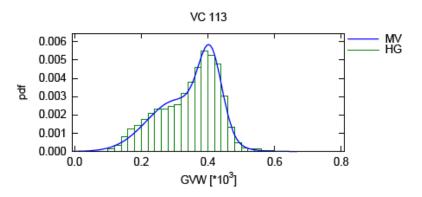
ONR 24008

Bewertung der Tragfähigkeit bestehender Eisenbahn- und Straßenbrücken

- Mehrstufiges Verfahren
- Auf Basis
 aktualisierter
 Daten ab
 Stufe 2 mit
 reduzierten
 Teilsicherheitswerten
- Probabilistische Ansätze in Stufe 3

VERKEHRSDATENERFASSUNG 2008

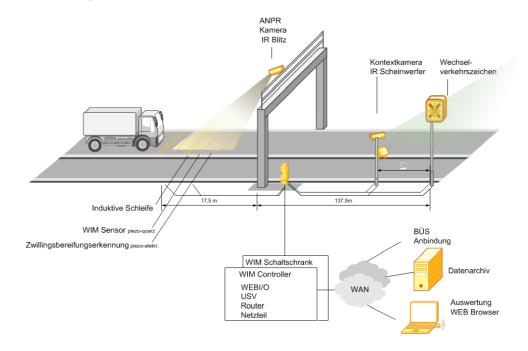
- BASIS FÜR ABLEITUNG LASTMODELL "REALER VERKEHR"
- BASIS FÜR FESTLEGUNG EINES MINDESTERTÜCHTIGUNGSSTANDARDS

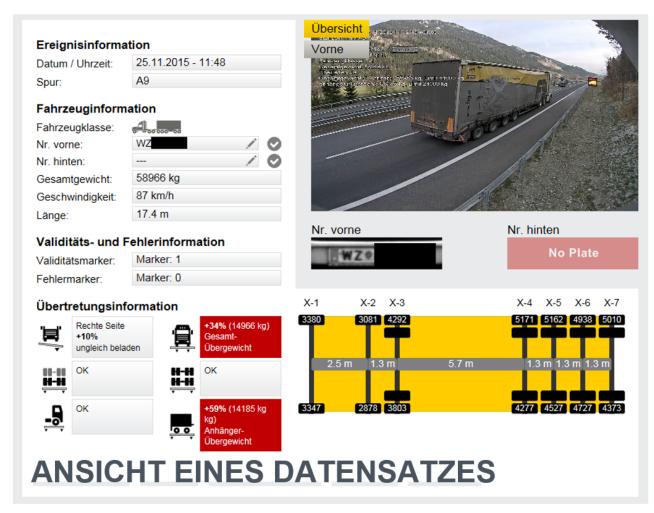

Objekt: B88

B88 Feldwegunterführung

BWIM-Messung 2008

z.B: vc 113


Statistische Erfassung der Verkehrsdaten Über Vergleichsrechnungen Referenzierung zu Lastmodell EC



VERKEHRSDATENERFASSUNG AKTUELL

~10 WIM-ANLAGEN IM ASFINAG-NETZ

WIM Systemübersicht

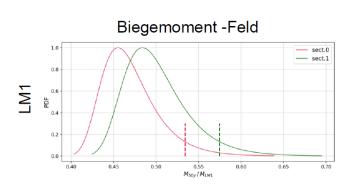
Aufgrund Datenschutzes jetzt ohne Bilder und Kennzeichen

VERKEHRSDATENERFASSUNG ZIELE

- PRIMÄR: KONTROLLE DER FAHRZEUGGEWICHTE
- VORSELEKTION BEI VERWIEGUNGEN
- VERKEHRSDATENERFASSUNG
- LASTKOLLEKTIV FÜR ERMÜDUNGSBERECHNUNGEN

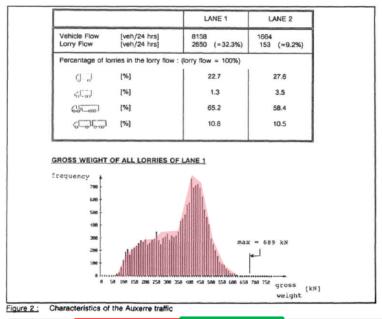
VERKEHRSDATENERFASSUNG ZIELE

- ABLEITUNG EINES BRÜCKENBEZOGENEN LASTMODELLES


Zweckmäßig bei Strecken mit geringem Schwerverkehrsaufkommen bzw. entsprechend großen Tragwerken

Anwendung nur falls Tragwerksertüchtigung auf geforderten Standard nicht möglich ist und mit reduziertem Lastansatz eine wirtschaftliche Lösung für eine Restnutzungsdauer gefunden werden kann

Wird aktuell bei einer Brücke im Großraum Wien untersucht


Ergänzend zu Messungen Erfordernis von weiteren Festlegungen

- Fließender Verkehr Stau
- Dynamische Beiwerte
- Verkehrslasten auf weiteren Spuren
- Zukünftige Verkehrsentwicklung

Hintergrunddokument zu Entwicklung LM 1

Messungen Auxerre traffic/ Paris- Lyon

Verkehrs- lastmodell	Charakteristische Werte	Häufige Werte	Quasi ständige Werte
Straßenbrücken			
LM1 (4.3.2)	Wiederkehrperiode 1000 Jahre (oder übersteigende Zuverlässigkeit von 5% in 50 Jahren) für Verkehr auf den Hauptstrecken Europas (α-Faktoren gleich 1, siehe 4.3.2)	Wiederkehrperiode 1 Woche für Verkehr auf den Hauptstrecken Europas (α Faktoren gleich 1, siehe 4.3.2)	Anpassung nach in EN 1990 angegebenen Definitionen.

DANKE FÜR DIE AUFMERKSAMKEIT

Thomas Gabl

Regionalleitung Assetmanagement thomas.gabl@asfinag.at +43-664-60108-18443

